Bone health in phenylketonuria, reviewing the evidence

Introduction

There have been conflicting reports as to whether adults and children with phenylketonuria (PKU) have worse bone health compared to their peers. There is a lack of consensus on the extent and cause of bone abnormalities (if any) within the PKU population.

Literature reporting bone health have included cross sectional and cohort studies. Different methodologies have been used to investigate bone health and the correlation to variables such as blood phenylalanine (Phe) control and protein substitute adherence. Many of the studies have failed to assess nutritional status, physical activity, body composition, and lifestyle choices (smoking, alcohol intake) or genetic factors which all influence bone health. Some studies have used mouse models, the human studies have recruited both children and adults in small numbers, and subjects have followed different dietary regimens with different nutrient compositions. This makes it difficult to interpret the literature in order to counsel patients on bone health in day-to-day clinical practice.

Bone health in PKU has had renewed interest since the introduction of glycomacropeptide (GMP)-based protein substitutes as an alternative to amino acid (AA)-based protein substitutes for the dietary management of PKU. It has been hypothesised that protein substitutes based on GMP could provide benefit for bone health in PKU.

The objective of this evidence summary is to assess the available evidence relating to PKU and bone health in order to investigate the hypothesis that GMP-based protein substitutes are beneficial for bone health.

The aims of this evidence summary are:

1. define bone health in the general population, including how it is measured
2. review the current evidence on bone health status in PKU
3. collate the evidence available on factors affecting bone health in PKU including dietary management
4. examine the literature related to bone health and GMP in PKU.
Bone health essentials

The human skeleton is a mechanical structure, designed to provide protection, structure and support. It is made up from two types of bone as shown in figure 1:

Figure 1: diagram of human bone

Trabecular bone makes up the inner layer of the bone and has a spongy, honeycomb-like structure[1].

Cortical bone forms the outer layer of the bone and is dense and compact.

Figure 2: accumulation of bone mass

- Peak bone mass
- Age-related bone loss
- Menopausal bone loss

Age (years)

Bone Mass

Men

Women
A child's skeleton is constantly changing in both size and composition. As the skeleton grows the bones are constantly being built and broken down, a process known as modelling and remodelling. Bone growth occurs in two ways; by increasing size and the accruing of bone minerals. In children these processes occur at different rates and times, however, by age 20-30 years the skeleton has reached its maximum, known as peak bone mass. Age-related bone loss then starts to occur where bone is removed faster than replaced. This process is shown in figure 2.

A person's bone mass depends on the peak bone mass achieved and on the rate of loss later in life. Bone mineral density (BMD) is a measure of bone mass. Women experience an acceleration of bone loss around the time of menopause which lasts approximately 5-10 years. In children and adolescents who have not reached their peak bone mass, it is important to be able to assess if either bone growth or the build-up of bone minerals are altered, which would increase the risk of fragility fractures in childhood or later in life.

Low bone mass is associated with increased risk of osteoporosis and fracture. Risk factors for low bone mass include:

- Unmodifiable factors: certain ethnicities, female gender, increasing age and family history of fracture.
- Modifiable factors: low body mass index (BMI), smoking, weight-bearing exercise, excess alcohol, vitamin D deficiency, low calcium intake, hormonal disorders and certain medications.

Measuring Bone Health

Bone health can be measured in different ways including:

- **Bone blood parameters:** total plasma calcium, plasma phosphate, parathyroid hormone (PTH), 25-hydroxyvitamin D (25(OH)D), urinary calcium.
- **Bone blood turnover markers (BTM):** alkaline phosphatase (ALP), osteocalcin, type I collagen propeptides, deoxypyridinoline (DPD) cross-links of collagen, N-terminal and C-terminal cross-linked telopeptides.
- **Bone Mineral Density (BMD):** dual-energy X-ray absorptiometry (DXA), quantitative computed tomography (QCT), peripheral quantitative computed tomography (pQCT), quantitative ultrasound (QUS).
- **Diagnostic imaging:** radiographs (X-ray), radionuclide scans, magnetic resonance imaging (MRI).

Bone blood turnover markers

Bone turnover markers (BTM) involved in formation, resorption and regulation are released into the blood during bone remodelling. It has been advocated to use blood BTM in combination with the measurement of BMD to provide a more comprehensive clinical assessment of fracture and osteoporosis risk.

Bone Mineral Density

BMD is a measure of the amount of calcium and other minerals (the bone mineral content) per square centimetre of bone. DXA is the most commonly used method to measure BMD. DXA measures a specific bone or bones, usually the spine L2-L4 (lumbar) and hip (femur) but can also be wrist (radius) and/or total (whole body). Reporting at different sites can alter the findings.

Spinal BMD is significant for trabecular bone, and femoral BMD for cortical bone. The density of measured bone is compared with an average index based on age, sex, and size to determine risk for fractures and the stage of osteoporosis (if any) in an individual. See figure 3 for an example of a DXA scan report with explanation of the measurements which identify low BMD/osteopenia and osteoporosis. A specific image of the whole spine called the Lateral Vertebral Assessment (LVA) is particularly important and regarded as a standard measurement assessing skeletal fragility and undiagnosed spinal fractures.
Figure 3: Example DXA scan report with measurements explained.

T-score

The number of standard deviations above or below the mean when the patient is compared to healthy 30-year-old adults of the same gender and, in some cases, ethnicity[3].

The World Health Organization diagnostic descriptors of T-score results are:

- Normal: −1.0 or higher
- Osteopenia/Low BMD: −1.0 to −2.5
- Osteoporosis: −2.5 or less
- Severe osteoporosis: −2.5 and below + fragility fracture

This is illustrated in the top right hand example graph with the black result box within the normal range for a 65 year old.

Because BMD declines with age, T-scores are consistently lower than Z-scores after about the age of 40 years, and the difference increases with age[6].

Z-score

The number of standard deviations above or below the mean compared to patients of the same age and gender, and in some cases, ethnicity[3].

The International Society for Clinical Densitometry (ISCD) state: Z-scores of −2.0 or lower is defined as "below the expected range for age", and a Z-score above -2.0 is "within the expected range for age"[7].

Z-score are preferred when reporting BMD in females prior to menopause and in males younger than 50 years. The incidence of low BMD in the general population is 2%. Low BMD in children is defined as a BMD Z-score of less than -2. Osteoporosis cannot be diagnosed in children or men under 50 years based on BMD Z-score alone but must be coupled with a significant fracture history[3].

NOTE: Although DXA is the preferred method of measuring bone density, there are limitations when using this method in children. Children with reduced height compared to peers have an appropriate reduced bone mass. DXA overestimates bone density in a tall child while underestimating bone density in a short child; this may lead to misinterpretation of results. In children, the head constitutes a large portion of the total bone mass and is larger compared to body size. Therefore, it is important to exclude the head from DXA scans measuring total BMD in children, this adapted measurement is known as total body less head (TBLH).
Bone health in PKU is affected by the same factors as the general population in addition to PKU specific factors. It has been suggested that genetics, and the necessity to follow a restrictive diet, could play significant roles. One of the first reports on abnormal bone health in PKU was by Feinberg and Fisch in 1962[8], which reported striations on long bones in neonates with PKU. In recent years there have been considerable advances in the dietary management for PKU and so it should be expected that updated outcomes for bone health should follow. Opinions remain divided and many clinical questions remain unanswered.

There have been three systematic reviews published on bone health in PKU (Enns et al., 2010)[9], (Hansen and Ney, 2014)[10] and (Demirdas et al., 2015)[11]. Since Demirdas et al., 2015[11] systematic review and metaanalysis was published there have been several more publications regarding bone health in PKU[12-20]. Findings from these reviews and the subsequent studies have been tabulated in appendix 1 to allow comparison. It is evident from these publications that low BMD in PKU is not universal.

BMD has been the most investigated measure of bone health in PKU. BMD Z-scores are most commonly reported in studies of bone health in PKU because the population is relatively young and results from paediatric and adult subjects are combined[11]. However, no studies have reported BMD measurements in children as TBLH therefore caution is required when comparing with adult DXA Z-scores. Studies have also reported DXA Z-scores measured at different sites making comparison between studies difficult. A recent review provides more detail of the current techniques available to measure bone density and their potential limitations, it illustrates assessing bone health in children is challenging and measurements in isolation cannot provide a definitive diagnosis or conclusion[21].

All the publications in appendix 1 that reported mean DXA Z-scores showed PKU patients to be within the expected range for age (above -2) according to ISCD official positions[7]. 5 publications compared DXA Z-scores with controls or reference populations. One conference report found no difference between patients and controls ($p<0.05$)[14]. Four publications reported BMD Z-scores as being lower in their PKU cohort[10,11,16,20]. One recent publication compared adults only to the reference population and found mean BMD Z-scores were significantly lower for all skeletal sites except the radius[20]. Frequency of low BMD was observed in 1.6-5.5% with the maximum being observed at the spinal level, however, this is lower than described previously.

Statistical significance was not provided in the other three publications and authors were conflicted on the clinical significance of their findings[10,11,14]. Few studies have reported on bone mineral content (BMC) or bone turnover markers (BTM) in PKU. In the Demirdas et al., 2015[11] review authors reported the clinical implications of BMC in PKU were unknown. It stated that the results on BTM were ambiguous and consensus on the utility of BTM, including reliable methods of collection and reference ranges, should be established for further investigation. Geiger et al., 2016[13] found no abnormalities in BTM and Choukair et al., 2017[15] found normal BTM in the majority of their cohort.

Considerations

Recent studies on bone health in PKU, summarised in appendix 1, varied in study participants and methodologies including; BMD measured at different sites, wide age range, and use of sapropterin dihydrochloride (Kuvan®). Details on physical activity, body composition and fracture history are lacking. Many factors related to growth and development have been shown to influence BMD and peak bone mass in healthy children[19] with height particularly influencing BMD and BMC. While height of PKU children is statistically comparable to peers based on Z-scores[22,23] other factors that need to be considered in PKU are weight bearing exercise, pubertal status and age at menarche, which are often unreported in study findings. Few studies report time spent exercising.

Nutritional intakes, genetic and lifestyle factors are known to influence bone development and health in the general population[2]. Section 3 explores factors which have been identified to affect bone health in PKU. Appendix 2 tabulates findings reported by studies included in appendix 1 which investigated dietary associations.
Section 2 summarised the evidence on bone health in PKU and demonstrated that the presence of impairment is contested. The presence of impairment is contested, whether it could be inherent to PKU or related to the dietary management. Many factors affect bone health and skeletal development, some of which have been investigated in the human PKU population:

Unmodifiable Factors

Genetics

Choukair et al., 2017 and Coakley et al., 2016\(^{15,18}\) reported no correlation between PAH-deficiency severity and BMD.

Choukair et al., 2017\(^{15}\) suggested there is a primary disorder of bone metabolism inherent to the PKU genotype independent of serum phe level. The authors suggested this could explain findings from Solverson et al., 2012\(^{25}\) as the PKU mice showed impaired bone biomechanical performance regardless of sex or diet compared to the wild-type mice.

Serum phe

Reviews by Hansen and Ney, 2014\(^{10}\) and Demirdas et al., 2015\(^{11}\) concluded there were no correlations between serum phe and bone health in PKU. This finding has also been consistently reported in subsequent studies\(^{13,15,18,20}\).

Dietary intake

Appendix 2 tabulates the findings from the review and any subsequent studies which have investigated associations between dietary intake and outcomes of bone health. These primarily focused on protein, vitamin D, calcium, phosphate and magnesium.

Six out of the eight studies assessed for a correlation between bone health and nutrient intakes\(^{11,13,17,18,20,27}\). One review reported no correlation between dietary intake and outcomes\(^{13}\). One study reported no correlation between...
likely cause of any bone impairment has been debated, whether it could be inherent to PKU or related to the dietary management. Section 2 summarised the evidence on bone health in PKU and demonstrated that the presence of impairment is contested, where one impairment has been debated, whether it could be inherent to PKU or related to the dietary management.

Many factors affect bone health and skeletal development, some of which have been investigated in the human PKU population:

Dietary intake

Dietary intake

Physical activity and lifestyle factors

Most studies investigating BMD do not take weight-bearing exercise into account. PKU subjects have been reported to engage less in weight-bearing exercise than healthy subjects. Demirdas et al., 2017 reported median physical activity for their cohort of continuously treated PKU patients as 205 min/week for adults (meeting WHO recommendations), 325 min/week for children ages 12-17 years (20% meeting recommendations) and 180 min/week for children 1-11 years.

Smoking and alcohol intake are also important factors influencing bone health. One study reported smoking and alcohol consumption in a large cohort of adult patients but found no association with low BMD.

Protein substitutes provide essential nutrients for bone health in PKU. Improvements in dietary management in recent years include stricter blood Phe target ranges, increased monitoring, improved access and continuing the diet for life. Improvements in technologies to optimise taste and convenience of protein substitutes are linked to improved adherence and nutritional status. Therefore, assessment of bone health in individuals who have not received optimal nutritional management could explain an inaccurate representation of bone health in the PKU population.

calcium or vitamin D supplementation and BMD. Two out of the six studies reported BMD was significantly positively correlated with protein substitute intake in cohorts containing a combination of patients who were meeting minimum protein requirements (either synthetic or natural). Two studies reported a non-significant negative correlation or no correlation between BMD and protein substitute intake, participants reported lifelong adherence to the PKU diet. The impact of overall protein status, including biological value of intact versus protein substitute and percent of total protein derived from protein substitute on bone were not considered by any of the studies.
GMP and bone health in PKU

Glycomacropeptide (GMP) is a macropeptide derived from a natural protein source. Un-modified it is an incomplete protein source. GMP is supplemented with the limiting, indispensable amino acids (apart from phenylalanine) in order to provide a viable alternative to AA-based protein substitutes for the dietary management of PKU. GMP-based protein substitutes have been shown to provide a suitable alternative to AA-based protein substitutes for growth, micronutrient status and metabolic control when used as the sole protein substitute or combined with other AA-based protein substitutes in adults and children with PKU[34-36]. It has been recommended that GMP-based protein substitutes should be introduced carefully and systematically in children[34].

Positive health benefits of GMP have been proposed including improvement of bone and gut health, prebiotic and anti-inflammatory properties and nitrogen retention[34, 37, 42].

All the evidence on bone health in PKU summarised in section 2 is based on research conducted on PKU patients taking AA-based protein substitutes. No published studies have measured bone health in patients whilst taking GMP-based protein substitutes. The long-term effects of GMP-AA-based protein substitutes on bone health in PKU are not established[34].

Evidence available involving GMP-based protein substitutes and BMD in PKU:

(Solverson et al., 2012)[25]

Subjects:
Wildtype (WT) and PKU mouse models (n = 21).

Investigations:
Mice consumed either a casein, AA, or GMP diet from weaning. DXA, 3-point bending testing and diaphyseal structure of femur. Total study length = 17 - 22 weeks.

Findings:
BMD was significantly lower in PKU mice compared to WT regardless of diet. No difference in BMD found between the diets in PKU mice. In WT mice femur size and strength reduced in AA group compared to GMP and casein group.

Considerations:
Disease specific mouse models are produced with intensive brother-sister mating to produce mice with practically identical genomes in order to knock out specific genes more easily[41]. Differences seen in bone fragility between the inbred PKU and wildtype mice could be affected by genetic factors, this was supported by subsequent findings[41]. Activity levels were not assessed. It was acknowledged that neurological damage from Phe toxicity in PKU mice would likely have reduced physical activity levels and increased their risk of skeletal fragility. The differences in skeletal structure and development in mice compared to humans limit direct conclusion[31, 42].

(Solverson et al., 2012)[25]

Subjects:
8 early-treated PKU patients aged 16-35 years

Investigations:
Two staged, crossover pilot study. Potential renal acid load (PRAL)* of protein substitute calculated. Food records and 24-hour urine collection after consuming low-phe diet in combination with high-PRAL* AA-based, or low-PRAL* GMP-AA-based protein substitutes for 1-3 weeks each. Patients taking a low-PRAL* AA-based protein substitute were excluded. DXA completed at baseline when taking usual AA-based protein substitute.

Findings:
9 out of 10 AA-based protein substitutes had a 1.5–2.5-fold higher PRAL* than a GMP-AA-based protein substitute. A statistically significant increase in renal net acid excretion (RNAE) and calcium and magnesium urine losses were found in participants taking high-PRAL* AA-based protein substitutes, compared to those taking low-PRAL* GMP-based protein substitutes. Suggested that the cause of the increased skeletal fragility is associated with PRAL*.

Considerations:
Small cohort and short duration of GMP-based protein substitute exposure. DXA was taken at baseline substitutes and not repeated after GMP intake. Correlation between PRAL and BMD was not published. PRAL* statistically significantly affected by sodium content of product.
Considerations

When reviewing the literature available on bone health and GMP-based protein substitutes it is important to consider that all published evidence relating to BMD measurements in PKU are based on dietary management with AA-based protein substitutes. Poor bone health reported in early, continuously and adequately treated patients with PKU is contested.

No studies have reported BMD or markers of bone health in patients taking GMP-based protein substitutes. Studies which suggest that GMP-based protein substitutes benefit bone in PKU attribute this to GMP-based protein substitutes providing a lower PRAL* value\(^{(17,27)}\). A causal association between dietary acid load, measured with PRAL*, and osteoporotic bone disease is not supported by evidence in the general population\(^{(45,46)}\). PRAL* calculation used to investigate protein substitutes in PKU is significantly influenced by mineral and electrolyte content of the product, particularly sodium content. Patients taking a high-sodium, low-PRAL* AA-based protein substitute were not included in the investigation. The correlation between BMD and PRAL* value of the protein substitutes, which would support the hypothesis that high PRAL* reduces BMD, was not reported in either publication. It was reported that the correlation between intake of high PRAL* protein substitutes and BMD measures did not reach statistical significance\(^{(17,27)}\).

* See appendix 3 "What is potential renal acid load (PRAL) and how does it relate to PKU?"

(Stroup et al., 2018)\(^{(17)}\)

Subjects:

15 PKU patients aged 15-50 years

Investigations:

DXA completed reflective of usual AA-based protein substitute. 3-day food record diaries. PRAL* of protein substitute calculated. 24-hour urine collection after 1-3 weeks of taking either high-PRAL* AA, or low-PRAL* GMP-based, protein substitutes.

Findings:

Males\(^{(16)}\) had statistically significantly lower total body and femur BMD compared to females (no other BMD measurement reached statistical significance). Mean total femur DXA Z-score was negatively correlated with intakes of AA-based protein substitutes (p=0.048) but not spine or total body. No significant difference was found between male and female PRAL*, RNAE, or AA-based protein substitute intake (gPE/kg/day).

Considerations:

Small cohort and DXA not repeated after intake of GMP-based protein substitute. It was concluded that higher intakes of AA-based protein substitute with a higher PRAL* value results in low BMD in males, however, no significant difference between male and female PRAL* intake found. The correlation between mean PRAL* and BMD was not reported.
Bone health in PKU is complex and recent studies have shown mean BMD Z-scores are within the normal range according to ISCD definitions\(^{17-18}\). However, BMD is often lower compared to controls or reference populations, and the clinical significance of this is contested\(^{10, 11, 16}\). All research providing evidence of BMD, BMC and fractures have been based on patients who have taken AA-based protein substitutes.

Bone health is multifactorial and confounding factors are often not adequately controlled for in research. It is important to ensure future research is conducted on early and continuously treated individuals with PKU with adequate nutritional intakes. Few studies have investigated correlations between dietary intake and bone health. Those that have, linked improvement in bone health with adequate intakes of calcium and vitamin D, adherence to the phenylalanine-restricted diet and adherence to prescribed amounts of protein substitutes\(^{12, 16, 18}\).

It has been suggested that GMP-based protein substitutes could be beneficial for bone health. Although the prospect of clinical benefit of GMP is appealing, evidence related to bone health is lacking. Considering the complexity of genetic, clinical, nutritional and lifestyle factors which influence bone health, it is unlikely that changes in bone health could be attributed to a single dietary component such as GMP. No supporting BMD data in patients taking GMP-based protein substitute is currently available to allow any comparison to AA-protein substitutes and the evidence available from Solverson et al. 2012\(^{25}\), conducted on a mouse model, has limited application on informing clinical decisions for patients.

Current practical recommendations to optimise bone health for individuals with PKU include\(^{18, 30}\):

- ensuring adequate micronutrient intakes including; calcium, phosphorus, magnesium and vitamin D,
- regular weight-bearing exercise,
- optimisation of natural protein intake,
- promote adherence to prescribed amount of protein substitute,
- give protein substitute in at least 3 equal doses throughout the day to help optimal absorption of calcium.

GMP-based protein substitutes offer an alternative choice for clinicians and patients, providing a different taste and mouthfeel which many patients find preferable to AA-based protein substitutes\(^{33, 34, 47-49}\). GMP-based protein substitutes may help to promote adherence to dietary management for patients whose adherence can waver\(^{33, 48, 50}\).

Adherence to any protein substitute is likely to promote more optimal clinical outcomes for PKU patients, especially when the protein substitute is fortified with a comprehensive nutrient profile beneficial for bone health\(^{18, 51-53}\).

References

Glossary of terms

Bone Density or Bone Mineral Density (BMD): The average concentration of mineral in a 2- or 3-dimensional image or defined section of bone. This term is also used to refer to results of all types of bone densitometry.

Bone Mass: The amount of bone tissue as the total of protein and mineral in the whole skeleton or in a particular segment of bone.

Bone Mineral Content (BMC): The amount of mineral measured in a defined section of bone. Total bone mineral content refers to the amount of mineral in the whole skeleton or in a particular segment of bone.

Dual-energy X-ray absorptiometry (DXA): A measure of the amount of calcium and other minerals per square centimetre of bone and used to assess mass and fracture risk.

Osteopenia: A term originating from the Working Group of the World Health Organisation to refer to T scores between -1.0 and -2.5.

Osteoporosis: Defined by the Working Group of the World Health Organisation as a bone density T-score at or below -2.5. A diagnosis of osteoporosis is also made based on a vertebral fracture confirmed by radiograph.

Total bone less head (TBLH): DXA measurement which has excluded the head, used in assessment of BMD in children.
Appendices

<table>
<thead>
<tr>
<th>Author, year, country</th>
<th>Study type</th>
<th>Outcomes investigated</th>
<th>No PKU patients</th>
<th>Mean/median BMD Z-score (g/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enns et al., 2010⁹, USA</td>
<td>Systematic review.</td>
<td>Not reported.</td>
<td>Not reported.</td>
<td>Not reported.</td>
</tr>
<tr>
<td>Hansen and Neyn, 2014, USA</td>
<td>Systematic review.</td>
<td>BMD Z-score, fractures.</td>
<td>67 Mean age in studies on BMD: 9 ± 2 years, 11 ± 4 years, 9 ± 4 years</td>
<td>Spine: -0.10.</td>
</tr>
<tr>
<td>Demirdas et al., 2015¹⁰, USA and Netherlands</td>
<td>Systematic review and meta-analysis.</td>
<td>BMD Z-score, BTM, BMC, says fractures reported but then not assessed in outcomes.</td>
<td>360 Age range: 11-57 years.</td>
<td>Total: -0.45. Lumbar: -0.70. Femur: -0.96.</td>
</tr>
<tr>
<td>Geiger et al., 2016¹¹, USA</td>
<td>Single centre, cross-sectional retrospective record review and prospective cross-sectional study in PKU patients.</td>
<td>Hip and lumbar BMD, dietary intakes, 25 hydroxyvitamin D2 and D3, iPTH, plasma calcium, ALP.</td>
<td>88 IEM retrospective review. 20 PKU prospective study. Age range: 8-20y.</td>
<td>16 had normal BMD at both hip and lumbar. 2 had reduced BMD in the hip (-2.4 and -3.6). 1 had reduced lumbar BMD (-2.1). None had reduced BMD at both hip and lumbar. Mean Z-scores not reported.</td>
</tr>
<tr>
<td>Leiva et al., 2016¹², Chile</td>
<td>Single centre, cross-sectional study (conference abstract).</td>
<td>Lumbar, femur and total BMD.</td>
<td>16 Age range: 6-23 years.</td>
<td>Control: Lumbar: -0.4, femur: 0.2, total: 0.5. PKU: Lumbar: -0.3, femur: -0.3, total: 0.2. mHPA: Lumbar: -0.05, femur: 0.65, total: 1.25.</td>
</tr>
<tr>
<td>Daly et al., 2016¹³, UK</td>
<td>Baseline visit of a prospective, longitudinal, parallel, controlled study (conference abstract).</td>
<td>Height, weight, total %body fat, BMD Z-score, whole body BMD Z-score.</td>
<td>38 Age range: 5-16 years.</td>
<td>Males: BMD: -0.3 whole body: -0.4. Females: BMD: 0.3 whole body: 0.75.</td>
</tr>
<tr>
<td>Demirdas et al., 2017¹⁴, Netherlands</td>
<td>Multi-centre, prospective, cross-sectional study.</td>
<td>Dietary intake, blood micronutrient concentrations, fatty acid status, physical activity, fracture history, BMD Z-score.</td>
<td>60 Age range: 1-39 years.</td>
<td>Lumbar: -0.1. Femur: -0.45. Hip: -0.3.</td>
</tr>
<tr>
<td>Coakley et al., 2016¹⁵, USA</td>
<td>Single centre, prospective, cross-sectional study.</td>
<td>Anthropometry, BMD Z-score, BMC, dietary intake, blood amino acid concentrations, micronutrient status.</td>
<td>88 Mean age: 18.8 ± 11 years.</td>
<td>Total: -0.326.</td>
</tr>
<tr>
<td>Choukair et al., 2017¹⁶, Germany</td>
<td>Single centre, cross-sectional study.</td>
<td>Total BMD of distal and proximal radius Z-score, cortical and trabecular BMD Z-score, grip force, anthropometry, fractures, blood phenylalanine, PTH, 25-(OH) vitamin D, serum calcium, serum phosphate, ALP, osteocalcin, TRP, urinary calcium/creatinine ratio, DPD crosslinks</td>
<td>56 Age range: 11.8-41.5 years.</td>
<td>Distal radius total: -1.05. Proximal radius total: -0.11. Cortical: 0.12. Trabecular: -0.18.</td>
</tr>
<tr>
<td>Stroup et al., 2017¹⁷, USA</td>
<td>Baseline results of cross-over trial.</td>
<td>BMD Z-score for total body, lumbar, femur, and radius, body composition, potential renal acid load (PRAL) from protein substitute, dietary intake, 24-hour urine samples.</td>
<td>8 Age range: 16-35 years.</td>
<td>Mean Z-scores for the cohort not reported.</td>
</tr>
<tr>
<td>Stroup et al., 2018¹⁸, USA</td>
<td>Baseline results of randomised cross-over trial.</td>
<td>Total body, lumbar and femur BMD Z-score, body composition, PRAL from protein substitute.</td>
<td>15 Age range: 15-50 years.</td>
<td>Males: total body: -0.9, lumbar: -1.3, femur: -0.7. Females: total body: 0.2, lumbar: -0.4, femur: 0.4.</td>
</tr>
<tr>
<td>Lubout et al., 2019¹⁹, Netherlands</td>
<td>Multicentre retrospective survey study.</td>
<td>BMD Z-score for lumbar, femoral neck, total proximal femur, radius and total body. Natural protein intake, calcium and vitamin D supplements, use of sapropterin dichloride, mean phe the year before the recent DXA scan, smoking and alcohol consumption.</td>
<td>183 early treated PKU (ETPKU) adult patients</td>
<td>Mean Z-score (+/- 1SD) Lumbar: -0.527 Femoral neck: -0.324 Total proximal femur: -0.262 Radius: -0.298 Median Z-score Total body: -0.400</td>
</tr>
</tbody>
</table>
Appendix 1: summary of publications investigating bone health in PKU

<table>
<thead>
<tr>
<th>Fractures assessed</th>
<th>Physical activity assessed</th>
<th>Nutrient intake assessed</th>
<th>Author’s Conclusions</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Osteopenia and osteoporosis has been detected in the adult PKU population. The decrease in peak BMD in adult patients may be explained by long-standing dietary deficiencies or a primary defect in bone turnover inherent to the disease itself.</td>
<td>Misinterpretation of DXA Z-scores to diagnose osteoporosis and osteopenia. Limited studies included which reviewed BMD. Limited information reported. Mean BMD z-scores not provided to allow comparison.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20% fracture rate of 263 subjects.</td>
<td>Young cohorts. Inclusion of late diagnosed PKU patients and patients who liberalised their diet after the age of 8 years. These patients would likely have had reduced mobility associated with cognitive impairment and/or nutritional deficits which would increase their risk of lowered BMD.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✔</td>
<td>Mean BMD is within the normal range in PKU subjects, although mean BMD is lower in PKU patients compared to reference groups, statistical significance not reported. 90% of early treated patient with PKU are not at risk of low BMD. Clinical significance of a slightly lower BMD Z-scores is unknown.</td>
<td>Adherence to dietary treatment has not been assessed in the systematic review. Studies provided insufficient evidence to establish conclusions on BTM and other factors that may influence BMD including blood Phe concentrations, and nutrient intake. Fractures were not included in the search terms when reviewing the papers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✔</td>
<td>No evidence found for reduced BMD in children with PKU on specialised diets. Higher BMD was associated with calcium intake. In 19 participants, 3 had low BMD for chronological age (Z-score < -2) measurement at either the hip or the spine and none had a low BMD at both the hip and the spine.</td>
<td>Mean BMD z-scores not provided to allow comparison. Control group had other IMD and were not ‘healthy’ controls.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No significant difference in BMD between groups (p>0.05). This could be because the cohort has maintained an adequate follow-up that includes sustained contributions of calcium and vitamin D provided by protein substitutes from diagnosis at NBS onwards.</td>
<td>Small cohort. Conference report therefore limited information provided.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>There was a trend for males to have slightly lower BMD but for the girls to have a higher total body fat. All children with PKU on a low phenylalanine diet were growing appropriately and had a normal bone density for age.</td>
<td>Mean total-BMD Z-score of whole study population not provided to allow comparison. Conference report therefore limited information provided.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BMD Z-scores are within the normal range but lowered compared to the general population, statistical significance not reported. The clinical implications may be limited as none of the patients have osteoporosis as defined by ISCD. Lifetime fracture prevalence was normal.</td>
<td>The authors were unable to investigate association between dietary intake, blood concentrations of nutrients and BMD or fracture history.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✔</td>
<td>No subject had low BMD for chronological age (Z-score ≤ -2) which represents a lower prevalence of low BMD compared to previous reports. Compliance with medical food (protein substitute) prescription was the strongest predictor of total BMD Z-score.</td>
<td>Fracture history and physical activity not assessed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The radial bone is characterised by inadequately reduced bone strength in relation to muscular force, reduced cortical thickness, and reduced total BMD at the metaphyseal site. These alterations indicate a mixed bone defect in PKU, both of which are due to primary alterations of bone metabolism and to secondary alterations in response to neuromuscular abnormalities.</td>
<td>Conclusions drawn on radial bone BMD only. Proximal radius, trabecular or cortical BMD were not significantly altered. 64% of study population took any protein substitute, no sub analysis of correlation of protein substitute intake and outcomes reported.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 of 8 participants had low BMD-for-age (Z-score ≤ -2) and evidence of bone microarchitectural degradation.</td>
<td>Small cohort. Mean BMD Z-score of the cohort for any BMD measurement not provided to allow comparison. No participant had low BMD at both femur and lumbar.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Males with PKU have lower total body and femur BMD compared with females with PKU which may be related to higher intake of AA-based protein substitutes and greater calcium excretion.</td>
<td>Small cohort. No significant differences found between male and female PRAL. 9 PE AA-based protein substitute, RNAE, magnesium or sulphate to support hypothesis that higher intake of AA-based protein substitutes result in lower BMD.</td>
</tr>
</tbody>
</table>

Fractures described in 30 patients (16.4%), which is significantly lower than the estimated age-standardized fracture prevalence of 38.2% for England.
Appendix 3 What is potential renal acid load (PRAL) and how does it relate to PKU?

PRAL is a measure of the acid-base load of foods and estimates renal net acid excretion (RNAE)\(^{[44]}\). It is suggested that increased acid load has a negative impact on bone health by the following process\(^{[43]}\):

- **Increased dietary acid load**
- **Bone mineral releases acid-neutralising compounds**
- **Increased urinary calcium excretion and depletion of skeletal calcium**

PRAL is a controversial theory and is not widely accepted\(^{[43, 44]}\). It is reported that a causal association between dietary acid load and osteoporotic bone disease is not supported by evidence\(^{[43, 44]}\).
Appendix 2: summary of publications investigating dietary factors in patients taking AA-based protein substitutes

<table>
<thead>
<tr>
<th>Other findings</th>
<th>Author's Conclusions</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>Dietary compliance and dietary intake assessed as reported protein substitute intake, total protein or phenylalanine intake were not correlated to BMD or BTM. Vitamin D status does not seem to influence BMD.</td>
<td>The impact of overall protein status, including biological value of intact versus protein substitute and percent of total protein derived from protein substitute on bone were not considered by any study included in the review. Micronutrient intake and correlation to BMD was not investigated.</td>
</tr>
<tr>
<td>n/a</td>
<td>BMD was a significantly correlated with dietary calcium and protein substitute intake, suggesting that consumption of protein substitute, which provide most key nutrients important for bone health, play a crucial role in developing peak bone mass among patients with PKU. No evidence of low serum vitamin D in their population of children with IEMs compared to control children.</td>
<td>Small cohort of 12 PKU patients completed 3-day food diaries which lowered statistical power to investigate relationships between dietary intakes and BMD.</td>
</tr>
<tr>
<td></td>
<td>58% of participant’s total fat intake was below minimal recommended 20% of energy. Dutch patients with PKU on long-term dietary treatment have a near normal nutrient status, however, supplementation of micronutrients of which deficiency may be deleterious (e.g. vitamin D and selenium) should be considered.</td>
<td>The authors were unable to investigate association between dietary intake, blood concentrations of nutrients and BMD or fracture history.</td>
</tr>
<tr>
<td></td>
<td>BMD was significantly negatively correlated with dietary carbohydrate intake, dietary sugar intake, total glycaemic load and caffeine intake. BMD was negatively correlated with DEXA scans being taken in winter months. BMD Z-score was most positively associated with compliance with protein substitute prescription and dietary vitamin D intake and most strongly negatively correlated with caffeine intake and total glycaemic load. Promoting optimal protein substitute compliance may be a feasible strategy to improve BMD Z-score.</td>
<td>3-day food diaries do not represent long-term food intake patterns.</td>
</tr>
<tr>
<td></td>
<td>No BMD parameter was related to serum 25(OH)D concentrations. Hence, to what extent the high prevalence (83%) of vitamin D deficiency or insufficiency in this PKU cohort contributes to the altered macroscopic bone architecture cannot be assessed.</td>
<td>Nutritional intakes and association with markers of bone health were not assessed. Large proportion of the cohort not taking any protein substitute which was not included in sub analysis of results.</td>
</tr>
<tr>
<td></td>
<td>AA-based protein substitutes provided a 1.5-2.5-fold higher potential renal acid load (PRAL*) compared to GMP-based protein substitutes.</td>
<td>Small cohort. High-sodium, low-PRAL* AA-based protein substitutes not included. Correlation between PRAL* and mean total BMD for total cohort not reported.</td>
</tr>
<tr>
<td></td>
<td>PRAL determined for protein substitutes Correlation between PRAL* and BMD not reported.</td>
<td>Small cohort. Correlation between PRAL* and mean total BMD for total cohort not reported. No significant difference between male and female PKU intake to support hypothesis that decreased BMD in males related to increased intake of high PRAL protein substitute.</td>
</tr>
<tr>
<td></td>
<td>Of 106 patients, 22% smoked and 26% consumed on average > 2 units alcohol per day. No association found with BMD.</td>
<td>Dietary factors were derived from patient charts, therefore micronutrient intakes not assessed and not complete enough to draw conclusions on total protein and medical food protein intakes.</td>
</tr>
</tbody>
</table>

Stroup et al in 2017 and 2018\[17,26\] applied the PRAL theory to the PKU diet and implicated the PRAL value of AA-based protein substitutes as a cause of poor bone health in PKU. The calculation* that was used to determine PRAL of protein substitutes in these publications is heavily influenced by the minerals and electrolyte content of the products, the calculation only includes 2 amino acids. A high PRAL calculation for the AA-based protein substitutes examined in these studies were significantly influenced (p=0.006) by the higher sodium content of the GMP-based compared to amino acid-based protein substitutes.

The correlation between BMD and PRAL value of the protein substitutes, which would support the hypothesis that high PRAL reduces BMD, was not reported in either publication. It was reported that the correlation intake of high PRAL protein substitutes and BMD measures did not reach statistical significance\[17,26,\]

*The calculation\[25\] reference. PRAL = \((2 \times (0.00603 \times mg\ Met/d)) + (2 \times (0.0062 \times mg\ Cys/d)) + (0.037 \times mg\ phosphorus/d) + (0.0268 \times mg\ chloride/d)
- (0.021 \times mg\ potassium/d) - (0.026 \times mg\ magnesium/d) - (0.013 \times mg\ calcium/d) - (0.0413 \times mg\ sodium/d)."