

The dietary management of
Calcium and Phosphate
in children with
CKD stages 2-5 and on dialysis

Contents

Foreword	Page	3
Clinical questions	Page	4
Flow chart	Page	5
Summarising dietary management		
Step 1: Dietary assessment	. Page	7
Guide to the calcium content of foods		
Guide to the calcium content of calcium-based phosphate binders		
Guide to the phosphate content of foods and bioavailability		
Practical points (dos and don'ts)		
Step 2: Calcium and phosphate requirements	Page	12
Suggested Dietary Intake (SDI)		
Step 3: Management	. Page	13
Practical points (dos and don'ts)		
Phosphate swapping list		
Step 4: Monitor and review	. Page	15
Practical points (dos and don'ts)		
Step 5: Advice on use of phosphate binder medication (if required)	. Page	16
Practical points (dos and don'ts)		
What you need to know about phosphate binders		

Foreword

The Pediatric Renal Nutrition Taskforce (PRNT) is an international team of pediatric renal dietitians and pediatric nephrologists, who develop clinical practice recommendations (CPRs) for the nutritional management of various aspects of kidney diseases in children.

In 2020, the taskforce published clinical practice recommendations regarding the dietary management of calcium (Ca) and phosphate (P) in children with CKD stages 2-5 and on dialysis, describing the common Ca and P containing foods, the assessment of dietary Ca and P intake, the nutritional requirements for Ca and P and necessary modifications for children with CKD 2-5D.

This booklet aims to provide a practical guide on how to implement these recommendations in every day clinical practice and should be read in conjunction with the published paper.*

*McAlister, L., Pugh, P., Greenbaum, L. et al. The dietary management of calcium and phosphate in children with CKD stages 2-5 and on dialysis-clinical practice recommendation from the Pediatric Renal Nutrition Taskforce. Pediatric Nephrology, 2020. 35: 501–518. doi.org/10.1007/s00467-019-04370-z

https://www.espn-online.org/nutrition-taskforce/

Clinical questions

Question 1

How are Ca and P intakes assessed?

Methods of assessment

Question 2

What are the requirements for Ca and P?

Considerations

Question 3

How are Ca and P intakes managed?

Fluids

Food

Question 4

When is it necessary to adjust Ca and P intakes?

Monitoring

Question 5

How to manage P-binders?

Tips to optimise efficacy

Flow chart summarising dietary management

Step 1: Dietary assessment

Estimation of dietary Ca and P intake

Simple

- A diet history of a typical 24-hour period
- Identify the main dietary sources of Ca and P
- Recognise processed foods containing P additives

Detailed

- A 3-day prospective diet diary / food intake record
- Estimate intake of Ca and P if required by reference to food composition tables

An estimate of total Ca and P intakes should consider contributions from diet, infant and enteral formulas, nutritional supplements, dialysate and medications, including P-binders

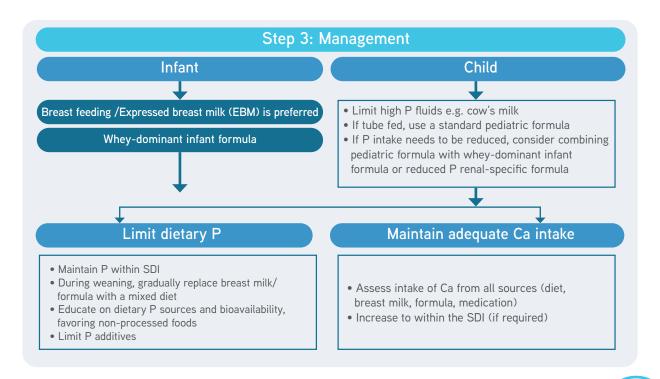
Step 2: Ca and P requirements

Compare intake to Suggested Dietary Intake (SDI) for age or height age (where height is <3rd centile)

Routine management

Infants Mineral depleted bones

- Ca intake within and up to 2 x upper SDI value
- P intake within SDI
- Limit P additives


- May require >2 x upper SDI value for Ca
- P intake within SDI
- Limit P additives

SDI for age

Age (years)	SDI Ca (mg)	SDI P (mg)
0 - <4 months	220	120
4 - <12 months	330-540	275 - 420
1 - 3 years	450 - 700	250 - 500
4 - 10 years	700 - 1000	440 - 800
11 - 17 years	900 - 1300	640 - 1250

Flow chart

0-0-0

Hyperphosphatemia or high PTH

Persistent hypophosphatemia Persistent hypocalcemia and high PTH

Hypercalcemia

Limit P intake within the SDI

Increase P intake >2 x SDI may be needed

Increase Ca intake >2 x SDI for a short period

Mild / moderate or severe / acute

See page 15 for further details

Discussion between doctor and dietitian to manipulate Ca and P sources (diet and supplements) and vitamin D

Step 5: Advice on the use of P-binder medication (if required)

Support management of P-binder medication to optimise efficacy and avoid excessive Ca intake

Step 1: Dietary assessment

A retrospective diet recall of a typical 24-hour period will rapidly identify the main dietary sources of Ca and P

A 3-day prospective diet diary/food intake record may be used when more detailed information is required

All sources of Ca and P should be considered: diet, infant and enteral formulas, nutritional supplements, dialysate and medications, including P-binders

Guide to the Ca content of foods

Food	Portion size	Ca mg per portion
Milk and dairy products		
Human breast milk (mature)	100ml	34
Whey-dominant infant formula	100ml	55
Standard pediatric enteral formula	100ml	60
Cow's milk	100ml	120
Custard or rice pudding	120g	140
Hard cheese	30g	240
Soft cheese (e.g. brie, mozzarella)	30g	120
Yogurt	80g (small pot)	90
Dairy free yogurt*	125g	130
Egg		
Egg, cooked	50g (1 egg)	28
Soya products		
Calcium-set tofu**	50g (2 tablespoons)	60
Cereal (grain) and cereal products		
Bread - white fortified / wholemeal	33g slice	58/35
Fortified breakfast cereals	30g portion	80-146

^{*}Check individual products for degree of fortification

Food	Portion size	Ca mg per portion
Fruits and vegetables		
Broccoli	3 florets	35
Curly kale	100g	150
Okra	8	90
Chickpeas / red kidney beans	3 tablespoons	45/40
Hummus	100g (½ tub)	45
Baked beans	150g small tin	80
Apricots	4	45
Currants	2 tablespoons	50
Figs, dried / ready to eat	5	230
Orange	1	75
Calcium fortified orange juice	100ml	120
Fish		
Sardines, canned in oil	40g (½ can)	200
Salmon, canned in brine	100g (½ can)	110
Nuts and seeds		
Almonds / brazil nuts / wal- nuts / hazelnuts	6-20	30-60
Sesame seeds	1 tablespoon	65
Peanut butter	2 tablespoons	20

Please refer to country specific food composition tables where possible. Only foods with an appreciable Ca content are listed.

Compositional data sourced and adapted from Public Health England: McCance and Widdowson's The Composition of Foods Integrated Dataset 2019.

^{**}Variable Ca content depending on production methods

Use the table below to document common food sources of calcium in your country

Food	Portion size	Ca mg per portion

Guide to the Ca content of Ca-based P-binders

Ca-based: % Ca

Calcium carbonate (CaCO ₃) Commonly available as 250mg, 500mg, 1.25g, 2.5g tablets	40
Calcium acetate Commonly available as 475mg or 950mg tablets	25
Mg and Ca carbonate combination tablets Variable tablet strength	Variable

For example:

1.25g CaCO₃ x 1 tds of elemental provides 1500mg of elemental Ca

Non-Ca based:

Sevelamer hydrochloride (800mg tablet) Sevelamer carbonate (800mg tablet or 2400mg sachet)	0
--	---

Other Ca-free P-binders that are available, but not recommended for use in children, include lanthanum carbonate and aluminium hydroxide. Newer medications, such as iron-based P-binders, are being evaluated in research studies.

Guide to the P content of foods and bioavailability (BA)

Food	Portion size	P mg per portion (40-60% BA)
Human breast milk	100ml	15
Whey-dominant infant formula	100ml	32
Cow's milk	100ml	100
Yogurt	125ml	100-200
Fromage frais	60g	70
Ice cream	100g (2 scoops)	100
Cheese, hard (cheddar, edam, gouda, emmental)	1 thin slice (25g)	120-160
Cheese, soft (camembert, mozzarella)	30g	80
Processed cheese	25g	250
Cottage cheese	1 tablespoon (40g)	50-70
Egg (whole)	50g (1 egg)	100
Egg white	30g (from 1 egg)	4
Soya milk (not Ca-enriched)	100ml	10-50 / 50-100
Tofu (depending on production and cooking method)	2 tablespoons (50g)	50-135
Lamb, pork, beef, fish, chicken (fresh, raw)*	100	130-220
Beef burger / sausage / chicken nuggets	1/1/6	100
Processed cold meat (ham, chicken roll)	1 slice (25g)	80
Fish fillet (small) / fish fingers / prawns	50g / 2 / 10	100
Salmon	½ salmon steak	100
Scampi	3 pieces	100
Baked beans	2 tablespoons (80g)	70
Nuts	1 small bag (25g)	120
Pulses	2 tablespoons (80g)	60
Bread – white / wholemeal	1 slice (30g)	30 / 60
Bran type breakfast cereals	1 small bowl (30g)	100-200
Wheat based breakfast cereals (wheat biscuits / cookies)	1 biscuit / cookie (20g)	50
Milk chocolate	1 bar (50g)	110
Chocolate covered biscuit / cookie	1 biscuit / cookie	20-40
Cola-based drinks	1 can (330ml)	100

Please refer to country specific food composition tables where possible.

Table adapted from McAlister, L. et al. (2020).
Compositional data sourced and adapted from Public Health England:
McCance and Widdowson's The Composition of Foods Integrated Dataset 2019.

Use the table below to document common food sources of phosphate in your country

Food	Portion size	P mg per portion (40-60% BA)	P additives (90-100% BA)

Practical points (dos and don'ts)

- Use country specific tables for Ca and P content of foods where possible. White bread and flour in the UK is fortified with Ca; values in the tables account for this added Ca content.
- Whole, semi-skimmed and skimmed milks have the same Ca and P content.
- Plant milks (including organic milk alternatives) and non-milk based puddings (e.g. soya yogurts) may be fortified with CaPO₄.
- P additives may be used in manufactured foods to act as a raising agent, extend shelf life, maintain color and moisture or enhance the flavor. Their use can increase P content by more than 50%.
- A diet using mainly fresh foods (non-processed) will contain a higher proportion of natural P which has a lower bioavailability, potentially reducing the dietary P load.
- Remember: manufacturers are not currently required by law to include P content in the nutritional information on packaging.
- Look for "phos" in the ingredients list of processed foods. This indicates the presence of P additives. The table below shows the names of EU approved additives and their E numbers which may be found on an ingredient label.

E 338	Phosphoric acid	E 452	Polyphosphates
E 339	Sodium phosphates	E 541	Sodium aluminium phosphates
E 340	Potassium phosphates	E1410	Monostarch phosphate*
E 341	Calcium phosphates	E1412	Distarch phosphate*
E 343	Magnesium phosphates	E1413	Phosphated distarch phosphate*
E 450	Diphosphates	E1414	Aceylated distarch phosphate*
E 451	Triphosphates	E1442	Hydroxyl propyl distarch phosphate*

^{*}these modified starches contribute very little $\mbox{\ensuremath{P}}$ to the diet

• Foods which may contain P additives; their presence may be brand-related:

Fresh meat and poultry	Fresh, raw meat and poultry could contain enhancers which include P additives
Processed meat and poultry	Processed meat and poultry, sausages, burgers, breaded products (such as chicken nuggets)
Fish	Frozen processed and unprocessed fish and breaded fish products (such as fish fingers)
Baked items	Cakes, biscuits, flour tortillas, crumpets, naan bread
Dairy	Dried milk products, milk desserts and yogurts, evaporated milk, cream, ice cream, sterilised and ultra-high temperature (UHT) milk, processed cheese (especially sliced or spreadable products)
Potato products	Frozen, chilled and dried products such as chips and waffles
Powdered food items	Sauces, instant dessert mixes (e.g. pancake mixes), instant pasta dishes, instant noodles
Drinks	Dark-colored fizzy drinks, chocolate and malt-based drinks

Step 2: Ca and P requirements

Use the Suggested Dietary Intake (SDI) for formulating dietary prescriptions and assessing the adequacy of dietary intake in individuals

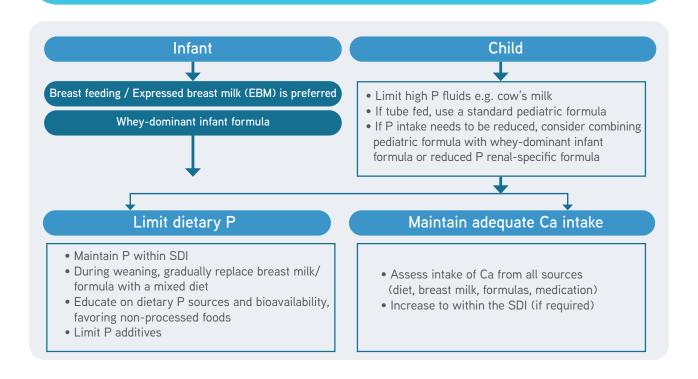
SDI for age

Age (years)	SDI Ca (mg)	SDI P (mg)
0 - <4 months	220	120
4 - <12 months	330-540	275 - 420
1 - 3 years	450 - 700	250 - 500
4 - 10 years	700 - 1000	440 - 800
11 - 17 years	900 - 1300	640 - 1250

For children with poor growth (<3rd centile / <-2 SD), reference to the SDI for height age (the age that corresponds to their height when plotted at the 50th centile on a growth chart) may be appropriate

Aims for Ca and P intake in CKD

Routine management


- Ca intake within and up to 2 x upper SDI
- Maintain P intake within SDI
- Limit P additives

Infants Mineral depleted bones

- May require >2 x upper SDI value for Ca
- P intake within SDI
- Limit P additives

Step 3: Management

Practical points (dos and don'ts)

- As breast milk and whey-dominant infant formula are low in P they are both suitable for infants with CKD.
- Renal-specific infant formulas (required for some infants to reduce potassium intake) may have a lower content of Ca and P. This may adversely reduce a child's mineral intake (particularly Ca). Using a standard whey-dominant formula alongside a renal-specific formula can improve Ca intake (e.g. mixing ½ standard formula and ½ renal-specific formula).
- Limit high P fluids for children e.g. cow's milk and cola-based drinks.
- Add an equal part of water to full-fat cow's milk to create a larger volume of milk to drink or
 use on breakfast cereals. Continuing to use a whey-dominant infant formula throughout the
 first and second years of life can be suggested if milk intake is high.
- Unfortified plant milks are an alternative to cow's milk, however, their use may reduce energy, protein and calcium intake.
- Suitable drinks include water, fruit juice, fruit squash or light-colored fizzy drinks.
- If tube fed, consider using a whey-dominant infant formula (whilst ensuring adequate energy and protein intakes) for younger children. For older children use a standard pediatric formula (carefully monitoring biochemistry). A P-binder may need to be given with feeds.

Food

- Weaning solids should be low in P e.g. fruit, vegetables (including potatoes) and cereal products (e.g. baby rice, oats, wheat cereal - check there is no added milk powder in the ingredient list).
- When an infant is taking solids regularly, a higher P food can be gradually introduced, monitoring serum P, e.g. allowing a small yogurt. Choose natural P sources rather than those with P additives. See INFOKID weaning advice (http://www.infokid.org.uk).
- Suggest use of small amounts of strong cheese (e.g. mature cheddar) or lower P cheeses such as full-fat cream cheese, cottage cheese or mozzarella. Check processed cheese for P additives.
- Use tomato-based sauces, rather than cheese or white sauce.
- Egg yolk is naturally rich in P (compared to egg white). A simple way to reduce P intake is to replace some of the egg yolk in dishes with egg white e.g. for scrambled eggs, instead of using 2 whole eggs use 1 whole egg and 1 egg white.
- Choose jelly and fruit for desserts, rather than milk-based products such as custard and yogurt.
- Replace chocolate spread and chocolate with jam, honey, marmalade or syrup, jelly sweets, boiled sweet, gums, mints, marshmallows.
- Reduce intake of chocolate biscuits, chocolate cake, crumpets or pikelets as they
 may contain P additives. Suggest choosing plain biscuits, shortbread, jam tarts,
 doughnuts instead.
- Educate on P bioavailability. Limit foods containing P additives (up to 100% bioavailability compared to 40-60% bioavailability of the natural P found in fresh ingredients). For example, use cold home cooked roast meat instead of packaged products; drink water, lemonade or squash instead of a cola-based drinks; choose fresh fish instead of fish fingers.
- Check any manufactured foods for P additives. Remember manufacturers are not required in all countries to list P on the ingredients/nutrient list. Recommend choosing fresh, unprocessed foods as much as possible.
- Although some snack products like breadsticks, corn snacks, crisps, popcorn and prawn crackers are low in natural P, they may contain P additives.
- The bioavailability of organic P and Ca from cereal products, nuts, seeds and pulses may be low, due to the presence of phytate.
- A 'healthy eating' dietary pattern should be encouraged, taking into consideration any necessary restriction of high P foods and drinks.
- First target processed foods with P additives. A reduction in dairy foods is the next step to further reduce dietary P. Other high protein foods, such as fresh meat and fish without P additives, do not usually need to be restricted unless their intake is excessive.

P swapping list

To achieve a reduction in dietary P, some families find a list of dairy-based foods containing similar quantities of P useful. A daily allowance of these foods that can be swapped for each other makes the diet more flexible and can improve compliance.

The following contain approximately 100mg P:

1 pot (125g) or 3 tablepoons yogurt

2 small pots (2 x 50g) of fromage frais

3 tablespoons or 1 pot (120g) custard or milk pudding

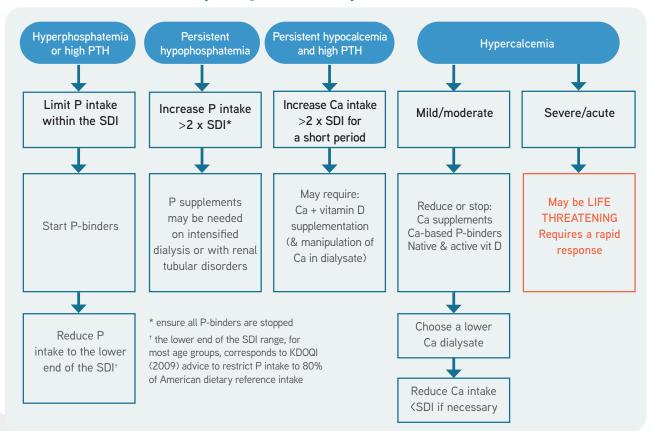
2 small scoops ice cream (100g) or 1 choc ice

1 small bar chocolate (50g) or 1 small packet of chocolate sweets

1 thin slice hard cheese (20g) or 1 heaped tablespoon of grated cheese

1 slice of processed cheese (or 1 cheese strip/string/triangle) - check for P additives or 2 tablespoons cottage cheese (40g)

1 small slice of pizza (100g)


1 small bottle probiotic drink

Step 4: Monitor and review

Doctor and dietitian to assess together

Frequency of review depends on: trends in serum Ca and P, stage of CKD and any changes in diet, dialysis and medications

Practical points (dos and don'ts)

Hypercalcemia

- Identify key sources of Ca in the diet (refer to table on page 7).
- Reduce dairy portion sizes.
- Find replacements for milk (including non-calcium fortified plant milks) if required.
- A specialized low Ca formula can be used for infant feeding or as a tube feed in children. It can also be used as a drink to improve nutritional intake. When prepared using deionised/distilled water, the Ca content of the reconstituted formula is further reduced.
- Some renal specific formulas and juice-based oral nutritional supplements are low in Ca. Use with due attention to overall mineral balance and nutritional adequacy.
- Reduce intake of other high Ca foods (e.g. fish, beans, nuts, Ca-fortified foods and drinks).

Step 5: Advice on use of P-binder medication (if required)

Supporting management of P-binder medication to optimise efficacy and avoid excessive Ca consumption

Practical points (dos and don'ts)

- P-binder dosing should be tailored to the amount of P in the diet from both food and formulas. Remember to dose for P-containing snacks.
- Some foods such as vegetables, fruit and cereals products (such as rice, bread, crisps, cakes and biscuits) may be low in P so, if not eaten with a high P food, may not need to be taken with a P-binder. However, food labels should be checked for possible inclusion of P additives.
- Products for nasogastric or gastrostomy feeding also require an appropriate dose
 of P-binders. The P-binders can either be given mixed into the formula, or at the
 beginning, during and end of the feed period.
- Some P-binders may cause formula ingredients to settle out. In this case they
 need to be given separately, mixed with water, and administered at the beginning
 or end of the feed period.

Calcium carbonate

High Ca load; usually well tolerated with few gastrointestinal side effects; requires an acidic pH in the stomach to dissociate into Ca and carbonate, hence must not be given with antacids or H2-receptor blockers; disperses easily when crushed and added to formulas; inexpensive.

Calcium acetate

Less Ca load than $CaCO_3$; few gastrointestinal side effects, but may not be well tolerated in infants; forms a suspension when mixed in formulas; can thicken some formulas or cause ingredients to settle out; inexpensive.

Mg and Ca carbonate combination tablets

Less Ca load than CaCO₃ alone; gastrointestinal side effects including diarrhea from the magnesium content; magnesium may have a protective effect on development of vascular calcification.

Sevelamer hydrochloride or sevelamer carbonate

Ca-free; may be difficult to administer in young children; expensive. Tablet is too hard to crush but will form a gel when mixed with warm water and allowed to stand. Powdered form is available for sevelamer carbonate in sachets. Can block feeding tubes if these are not flushed thoroughly after administration. Pre-treatment of formula with sevelamer and removal of precipitant prior to administration is practised in some units, although its effect on binding other minerals or fat soluble vitamins is not known, but may inadvertently bind calcium.

Note: All binders must be given 1-2 hours before or after oral iron supplements

The Vitaflo logo is a trademark of Société des Produits Nestlé S.A.

© 2023 All rights reserved. Société des Produits Nestlé S.A

www.vitafloweb.com

We would like to thank Vitaflo (International) Ltd who have provided support and funding for the artwork and production of this booklet.

All information correct at the time of print. The Paediatric Renal Nutrition Taskforce cannot accept responsibility for any unauthorised adaptation or translation of this material.